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Heritability measures the extent to which differences in observed phenotypes can be attributed to genetic
variation and ranges between 0 and 1. Heritability has several definitions. A general definition of heritability
is the squared correlation between genotype and phenotype. That definition is usually expressed as H? =

[corr(g, y)]?.

Plot-based Heritability

Let’s see how we can get to the familiar formula for plot-based heritability that involves the ratio of genetic
0_2
variance to phenotypic variance H? = —%. Our starting point will be the definition stating that heritability

represents the squared correlation between genotype and phenotype. We will assume a completely random-
ized design with balanced data.

Correlation definition The correlation between the genotype (g) and phenotype (y) is defined as the
covariance between g and y divided by the product of their standard deviations:

cov(g,y)
Og0y

corr(g,y) =

Phenotype representation Remember that phenotype (y) is represented as the sum of genotype (g) and
a non genetic-signal (r), and expressed as y = g + r. The non-genetic signal part r is the residual error. By
substituting the value of y, the correlation formula becomes:

cov(g,g+7)

corr(g,y) = p
gry

The additive law of covariance The additive law of covariance states that covariance of a random
variable with a sum of random variables is just the sum of the covariances with each of the random variables.
We have a term that is the covariance of g with a sum of g + r, expressed in the numerator as cov(g, g + 7).
Using the additive law of covariance we have that the covariance of g with the sum of g + r is the sum of
the covariances. Our formula becomes:

cov(g, g) + cov(g,r)
O0g0y

corr(g,y) =

Variance identification We know that the covariance of a given variable with itself is called variance.

So our formula becomes:
var(g, g) + cov(g,r)

040y

corr(g,y) =



As is usual with the residual error term, we assume r ~ N (0, 0,.). In simple terms this means that the residual
errors are normally distributed and come at random with mean zero and variance o,.. In a field setting this
assumption means that the phenotypic value is estimated for all the genotypes with the same precision.
We don’t expect some genotypes to have more error than others. This is possible because genotypes are
randomized. In consequence, we can assume that the residual errors (r) are independent of the genotype
(¢9). This means there is no covariance between them: cov(g,r) = 0. The formula simplifies to:

var(g,9)

corr(gy) = Y
97y

Change in notation and simplify We can express var(g, g) equivalently as ag and our formula is:
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%
corr(g,y) =
Og0y
This simplifies to a familiar expression.
o
corr(g,y) = -2
Oy

Squaring the Correlation Broad-sense heritability on a plot basis is equal to the squared correlation.
We square the formula and it becomes:

a 42
H} o = [cor(g,y))* = =%
Oy

So, broad-sense heritability on a plot basis is equal to the squared correlation between phenotype and

genotype and is expressed as:
T 42
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leot - 2
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Variance partitioning Note that the variance of a random variable can be partitioned into the variances
among the two components plus two times the covariance between the components. So, if y = g + r then
the variance can be partitioned as:
2 2 2
o, =0, + 0, + 2cov(g,T)
Because we established that the covariance between the genotypic value and the residual error is zero
cov(g,r) = 0 then:
2
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Oy =04+ 0}

Broad-sense heritability formula Substituting into the formula we get:
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Hpy = P
Broad-sense heritability (on a plot basis) is the ratio of genetic variance to phenotypic variance and indicates
the proportion of phenotypic variation attributable to genetic differences. Plot-based heritability is the
heritability of a plot. This estimation can be useful when comparing efficiency of an experiment desing
or to compare between experiments that have different number of replications. Breeders routinely include
more than one plot per genotype, resulting in replicated plots for the same genotype. We can still think of
heritability in this scenario of replicated genotypes. The next section deals with this notion, usually defined
as the entry-mean heritability.



Entry-Mean Heritability

Entry-mean heritability H, ezntry refers to the heritability based on the average phenotype for each genotype
when the genotypes are replicated in the experiment. For a completely randomized design (CRD) with

balanced data, broad-sense heritability on an entry-mean basis is defined as

0.2

H2 — g
entra =2
Y oZ+o,

Where:

. 0’; is the variance attributed to differences in genotypes in the experiment.

e 7,2 is the variance of the average residual error (also known as prediction error variance). The term
7,2 can be thought of as the variance in the different measurements (reps) for a given genotype in this
CRD example.

What is the average residual error variance for the entry-mean heritability? The challenge in
determining the appropriate heritability for a given experiment lies in accurately calculating the prediction
error variance associated with the mean phenotype: (d,.2).The value of ¢,% depends on the experimental
design. In a completely randomized design, where genotypes are randomly assigned to plots within a field, it
takes on a specific meaning. Let’s take a look. The linear model used to represent a completely randomized
design is:

Yij = gi + Tij

Here, i represents the genotype identifier, and j represents the replicate identifier. Replicates are the multiple
measurements on a given genotype. We have n total genotypes and m total replicates.

» y;; denotes the response for each replication of every genotype.
e g; stands for the genotype.

e 7;; represents the residual error, capturing differences between different replications of the same geno-
type. The j** measurement for the i*" genotype, has an error associated with it. It follows that Tij
is a random variable normally distributed with mean zero and a variance parameter, expressed as

2
Tig ~ N(O, Ur)'

Average residual error What is the average residual error for the i** genotype? It is intuitive that for a
given genotype, the average of the residual error is just the sum of all the errors divided by the number or
replicates. For a CRD with m reps it looks like this:

- Tt Triot 4T

Ti. =

m

The expression above represents the average residual error among m replications for the i** genotype.
Variance of the average residual error We can take the variance of the expression above:

7,2 = var(ry.)

We can substitute the average residual error in the variance operator :

_9 i1+ rig+ o+ Tim
o,° =var
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Variance scaling rule. This rule states that when a random variable is multiplied by a constant, the
variance of that random variable gets multiplied by the square of the constant and comes out of the variance
operator. Our random variables r; are multiplied by one over the number of replicates %, which is a constant.
Taking advantage of variance scaling rule. we have:

_ 1
0.0 = — lvar (ra 41+ i)

Additive law of variance This rule states that the variance of the sum of independent random variables
is equal to the sum of their variances:

1
g2 = —5 [var(ra) +var(ri2) + - + var(rim)]

Homogenous variance assumption We assume, for convenience that the variables r;; to r;,, are inde-
pendent and have the same variance. Then our formula simplifies to:

Average residual error In a completely randomized design, the variance of the mean residual error (¢,.2)
equals the variance component associated with plot residual error (¢2) divided by the number of replicates
(m). This relationship can be expressed as:

Entry-mean heritability formula We can subsitute this value in the formula for the entry-mean heri-
tability and we get:

2
where, 03 is the variance attributed to differences in genotypes in the experiment, [;: is the residual error

variance divided by m reps.

Average residual error for other experimental designs It’s crucial to note that determining the
correct heritability for an experiment lies on precisely calculating the variance of the average residual error
associated with the mean phenotype, denoted as &,2. This term can vary in complexity and may involve
numerous parameters, depending on the specifics of the experiment. The column Prediction Error Variance

in the table below shows some of the forms that the variance of this average residual can take.

Model Prediction Error Prediction Error Variance
2
Yijg = gi + Tij T =74 %g
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Model Prediction Error Prediction Error Variance
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In the table, m is the number of reps, e is the number of environments, [ is the number of locations, y is
the number of years. The models 1 to 4 are respectively: CRD, RCBD, CRD in a multi-environmental trial
using the E model, and CRD multi-environemntal trial using the LY model. Remember that e = ly, in
simple terms, environment is the location-year combination.

What can we learn fromt the table above? As the complexity of the experimental design model
increases, so does the complexity of the prediction error variance. An essential insight from the analysis is
that elements not indexed by the genotype () in the model do not contribute to the prediction error variance.
However, interactions involving genotype with factors like environment, location, or year do contribute to
this variance. As shown above and because of how the math works out, the trend is that genotype by
environment variance is divided by the number of environments, the genotype by location variance is divided
by the number of locations, the genotype by location by year variance is divided by the product of the number
locations and years and so forth.

Conclusion

It is critical to understand the type of experiment you have to estimate accurate heritabilities. Please note
that this formulas work in the context of balanced designs which in reality tends to be the exception and
not the rule. Breeders routinely use them in unbalanced designs at the cost of decreased precision, which
in cases may be negligible or pronounced. Plant breeding selection experiments tend to be unbalanced by
nature. We will see in the next handout, methods to estimate heritablity which are precise when used in
unbalanced designs.
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